Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Zunxi Huang

Zunxi Huang

Yunnan Normal University, China

Title: A new type of high efficiency, low temperature type lipase used for biodiesel production and new biodiesel production process

Biography

Biography: Zunxi Huang

Abstract

Biodiesel, was an alternative liquid fuel made from biological sources such as vegetable oils, animal fats or waste cooking oils by transesterification. Compared with chemical preparation method, enzymatic catalyzed method, owing to mild reaction conditions, low alcohol used level, easy glycerol recovery, no waste material production and so on, had been paid more attention. However, the expensive lipase obstruct the industrialization of enzymatically catalyzing technique on a large scale. Therefore, this paper used a new lipase catalyst to obtained the optimum process conditions for biodiesel. We screened out a higher esterification activity lipase. Bilesu Lp100, a lipase which tolerated temperature, pH and methanol better. For in the field of biodiesel the enzymatic properties were studied, the optimum reaction temperature was 45℃, and in less than 60℃ for 12 h the activity keeping more than 80%, the optimum pH was 7.0, and the enzyme activity can be maintained over 88% between pH 4.0-8.0 solution for 12 h, better tolerated methanol. Jatropha oil as raw material, lipase Bilesu Lp100 as a catalyst, the optimum process conditions: alcohol to oil molar ratio 1.72:1, lipase concentration 112.5 U each gram of oil,, and reaction time for 24 h. The average yield of biodiesel reached 96.85%. Waste oil as raw material, lipase Bilesu Lp100 as a catalyst, the lipase amount of catalyst was 58.38 U/g (oil), the reaction time was 14 h, the average yield of biodiesel reached 95.2%. An acid value of 194 mg/g fatty acids as raw material, using the two-step enzymatic and acid catalytic binding method, dropped the product of biodiesel acid value less than 1.5 mg/g.