Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Ahmed S Al Hatrooshi

Ahmed S Al Hatrooshi

Newcastle University, UK

Title: Marine waste bio-refinery

Biography

Biography: Ahmed S Al Hatrooshi

Abstract

The world is 70% covered by sea. The amount of fish oil obtained as a waste from fishing industry or from the discarded parts of fish can be used for making biodiesel and extracting high added value components like omega 3. Producing biodiesel from the discarded parts of fish could lower the production cost of biodiesel. In addition, fish oil has other high added value components such as omega-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic (EPA) and docosahexaenoic (DHA) that can be produced commercially. The main objective of the project is to utilize the marine waste by investigating a cost effective technique to extract omega-3 polyunsaturated fatty acids (PUFA) from the fish oil as well as producing biodiesel. There are several methods used for the separation of omega-3 concentrate from fish oil. The most common methods which are practiced commercially are: molecular distillation (short path distillation) and supercritical fluid technology. The short path distillation is process where the volatile components are vaporized at a wide range of temperature in a very short time because of high vacuum used. The vacuum can range from 10-5 to 10-6 bar at which volatility of most compounds becomes high which will allow operating at lower temperatures. The basic principle of the short path distillation is the difference of compound volatility under vacuum which will allow operating at lower temperatures. The difference in volatility of the shorter chain (16- and 18-carbon fatty acids esters) and the longer chain (20- and 22-carbon EPA/DHA ethyl ester) enable the short path distillation process to concentrate EPA and DHA ethyl esters to levels of over 50%.  Further concentration of omega-3 over 50% using the same method has some limitations. Firstly, substantial drop in the yield occurs. Secondly, the necessity to repeatedly run the oil through the same process which will cost more energy and expose the product to a very high temperature which will shorten the product stability and shelf life compared to other technologies.